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Two problems of the vibrations of strings are considered using the approach described previously in [l]: the vibrations of the 
string of a plucked musical instrument, drawn out at one of the points and at rest at the initial instant of time (Problem l), and 
the vibrations of the string of a keyboard musical instrument, the points of which are given an initial velocity at the initial instant 
of time by a hammer of small width (Problem 2). It is established that forced longitudinal oscillations of the string occur at 
frequencies of the transverse vibrations, the condition for possible resonance of the longitudinal vibrations is derived, and the 
nature of the vibrations at the point where the string is fastened due to elasticity and the related shift in the frequency of transverse 
vibrations is established. 0 2003 Elsevier Science Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM OF THE VIBRATIONS 
OF MUSICAL STRINGS 

As is well known (for example, from [2, 3]), the basis of the investigation of the vibrations of musical 
strings is the equations of transverse vibrations, which establish, qualitatively correctly, the relation 
between the frequencies and the length of the string, its tension and density. Nevertheless, there are 
no reliable data that the spectrum of the vibrations predicted on the basis of these equations corresponds 
to the measured value. Due to the fact that the dynamic components of the tension in the string are 
not taken into account, the mechanism of the vibration of the sounding board - the fundamental 
generator of the waves - is not completely described. In this connection, based on the well-known 
equations [4]. 

poxtr = (Tcose),, pOyt, = (Tsine), 
1+x case = -2 YS 
l+e’ 

sine = - 
1 +e’ 

e= j--l 

where s is the Lagrange coordinate of a particle, measured in the position when the string is not under 
tension and has a density p. , x(.s, t) and y(s, t) are the coordinates of the displacement vector, e is the 
deformation, T = eE is the tension and E is Young’s modulus, linearized equations were derived in [l] 
which enable the longitudinal and transverse vibrations of strings to be taken into account. The fact 
that longitudinal waves propagate (in addition to transverse waves) was pointed out previously in [4]. 

The displacement x can be conveniently represented in the form 

x = X+x0(s); e = 2+e,, x0 = eos 

which denotes the reading of the value of Z (and also y) with respect to the tied string, stretched to a 
deformation e. = const. 

The unknown functions x”(s, t), y(s, t) can be sought in the form 

Y = &‘n(y,+&y2+...), f = &(x,+&x,+...), 2 = EZ, +&+ . . . (14 

where E is the characteristic value of the additional deformation. 
When Eqs (1.1) are expanded in the small parameter E the following system of equations of the first 

approximation is obtained [l] 
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~l,r = bb,,,, 6 = 
TO 

pot1 + eo) 

2 1 
x1tr = a, 

( 
xls+ 2 &E 

2(1 + eo)2y1” s’ > O PO 

Taking into account one or other of the initial conditions for xls, yls, xlt, yl, and also the conditions 
at the points where the string is fastened, one can relate the nature of the action on the string to the 
transmission of vibrations into the sounding board. 

Below we will solve two fundamental problems of the theory of the vibrations of musical strings, in 
which the traditional formulation for the longitudinal vibrations y,(s, t) is supplemented by the 
formulation of the problem for the vibrations xi@, t). 

Problem 1 (the string of a plucked instrument is fastened at points s = 0 and s = 1, and when t = 0 
it is plucked at the point s = c to a height h and then released) 

Y,ul t) = y,(l, t) = y,,(s,O) = x,(0, t) = x,(1, t) = x,,(s, 0) = 0 

h 
Y,(S, 0) = ;s, X,(&O) = ;(c-I+&), if Olslc 

Y2(Sv 0) = +o, X,(&O) = (l-i)(c--y), if clslf (l-9 

Problem 2 (the string of a keyboard instrument is fastened at the points s = 0 and s = 1, and at 
t = 0 a hammer of width 26 gives the particles at rest a velocity V. = const) 

y,(O, t) = Y,(l, r) = y,(s, 0) = x,(0, f) = x,(4 t) = X,&S, 0) = 0 

i 

“0, if c-6SsIc+6 
Y&Y 0) = 

0, if s4i [c--&c+61 
(1.6) 

2. THE PROBLEM OF THE INITIAL PHASE OF THE MOTION 
OF A STRING IN THE NON-LINEAR AND LINEAR FORMULATIONS 

In Problem 1, to give an initial triangular form to the string it is necessary to apply a force F. to the 
point C (Fig. 1). This force causes, in sections AC and BC, an additional deformation 

eb’) = (AC+BC-AB)IAB 

(This quantity et) corresponds to the case of slippage of the string at the point C.) 
Suppose the string is released at t = 0; then, before faster longitudinal waves arrive at the ends A 

and B, the solution corresponds to the case of the propagation of waves in a string that is unconstrained 
on both sides (the parts which are inclined at angles of 6i and O2 to the X axis). Due to the fact that in 
this problem there is no characteristic length and the initial deformation is not constant, dimensional 
analysis gives 

Y = ~.f,(S4~0~))~ x = ff2Wb30) 

In this case Eqs (1.3) and (1.4), as was shown previously [4,5], have the simplest solutionsf; = const 
andfs = const, which denote that the components of the velocities and the deformations are constant. 
Along the parts of the string of the initial form, longitudinal waves L1 and L2 propagate from the point 
C, and after them transverse waves Si and &. At the point C deflection of the string is impossible 
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h 
Fig. 1 

(otherwise an element in the neighbourhood of the point C moves with an acceleration, which contradicts 
the solutions for the velocity). Hence, along the section SISz the deformations (tensions) and the 
velocities of all the particles are the same and constant. As was shown in [4, 51, the deformations do 
not suffer discontinuities for transverse waves, and hence everywhere in the region LiSiCS L2 the 
deformation ei’) (in addition to eo) is constant. Due to the difference in the values of et, (‘) and e$ along 
the sections L Si and L2S2 there is longitudinal motion of the particles of the string with velocity 

(l) ~0 = aO(eo , e, (3) towards the points A and B (as will be seen later et) > ei’)). 
The use of the law of the change in momentum in the direction ASi and perpendicular to it gives 

P? 51 
pO(bl - Uo)( VoCOSpl + Uo) = T(e)(COsy, - l)( 1 + e), e = e. + e\‘) (2.1) 

po(b, -uo)V,sinj3, = T(e)siny,( 1 + e) P-2) 

Here bi is the velocity of the wave Si and V. is the modulus of the velocity along section SiS2. The fact 
that the angle of deflection of the string LISISz remains unchanged with time leads to the relation 

b, siny, = Vosin(/3, - y,) (2.3) 

We can obtain the following relations [4, 51 from Eqs (2.1)-(2.3) 

Po(b, - uo? = Ee( 1 + e) = T(e)siny, (2.4) 

6, = b, = b = a0 (e,+e~‘))(l +eo+eI’))+aO(e~)-e~‘)) 

V,sin& = (b - Uo)siny, (2.5) 

From Eqs (2.1) and (2.2) and similar equations for the wave Sz, taking the relations 0i - yl = 
~2 - t32, pi + pz =n + yi + y2 into account, we obtain Vo, et), yl, pi. 

Taking into account the fact that e. is small, we have 

bsineO = V,, V,COS~~ = (b - uo)sint!10 
A  

bcose, = b-u,, l-Iose = (e,+e~‘))(l+eo+e(l’))+t, & = et)-ei’) 
(2.6) 

0 

V. = hoe0 = 
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Fig. 2 

In Problem 2, at the instant t = 0, two longitudinal waves (L, and L2) and two transverse waves 
(S, and &) begin to propagate from points A and B (Fig. 2). Until one of the waves L1 and L2 reaches 
the point where the string is fastened or the middle AB, the solution corresponds to the problem of 
the propagation of waves in an unlimited string, to all points of which, beginning from A and further, 
a constant velocity V, is applied from the right at the initial instant. As in Problem 1, it can be shown 
that in the region L1S1S2L2 the stretching deformation (additional to es) is constant, and along the parts 
LISl and L& longitudinal motion occurs with a velocity u. to the deflection points. 

The components of the velocity V, and V, along the section S1S2 are constant. The use of the laws 
of the change in momentum along the direction OX when the particles pass through the waves Si and 
S2 , respectively, leads to the following relations, similar to (2.1) 

Po(b + 4Jwv, - uo) = Tcosy(cosy - l)( 1 + e) (e = e. + el”) (2.8) 

whence V, = 0. 
Similarly, along the direction OY, like (2.2) we have 

PO@ + 4)) v, = Tsiny( 1 + e), po(b + uo)( V, - V,) = -Tsiny( 1 + e); V, = V,/2 (2.9) 

From the remaining equations (2.8) and (2.9) which we write in the form 

Po(b + uo)uo = T( 1 - cosy)( 1 + e), po(b + uo)Vo/2 = Tsiny( 1 + e) 

and from the relations b tgy = 1/o/2, u. = aoecl) when v. = Jfo/ao G 1 we obtain 

(2.10) 

(2.11) 

We will solve Problem 2 within the framework of Eqs (1.3) and (1.4). Taking condition (2.4) into 
account, we convert relations (2.9) as follows: 

V, = (6, + uo) siny, V, - V, = -(b, + uo) siny (2.12) 

Denoting the trajectory of the transverse wave by s = s*(t), we have [4] 

b = &*(r)+x[s*(t),rl} = d*(l +x,)--u 

(b+u) = (l+e)‘$; ‘5 = + 

In this case relations (2.12) take the following form 

v, = y, = - d$ys, v, - v, = d$y, (2.13) 
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which are identical for the transverse components yi(.s, t) with the relations on the characteristics 
ds*/dt = ba for Eq. (1.3). Hence, relations (2.13) do not introduce any additional information into the 
formulation of problem 2 for Eq. (1.3). Its solution as t + 0 (when the wave pattern is identical with 
the pattern which occurs in the case when a constant velocity Va is given to all points s c 0 to the left 
of A when t = 0) has the form 

Yls = 0, @Y ], = V,, when --oo<sc-bet 

Yl, = Yls = 0 when s* 2b,t (2.14) 

%I- (1) VO 
e1 Ylf = -9 2 J-- 

VO e;‘)yl, = -2b when -b,t I s* I b,t 
0 

The value VY = IQ2 in the region of the deflection, obtained from (2.14) is identical with its exact 
value. 

To findxi(s, t) we convert relation (1.8) in the same way as was done with relations (2.13). We obtain 

VX-UO = (b+u,)(cosy- 1) = ‘s(l +e)(cosy- 1) = -~(e~‘)-x,) 

-v,-u, = (b + u,)(cosy- 1) = d$(l +e)(cosy- 1) = -d$(e(,‘)-x,) 
(2.15) 

Taking into account that, for the first approximation 

(1) 1 2 
e1 = xls + q 1 + eo)Yl” 

relations (2.15) can be written in the form 

x*,-a0 = - bo 2 bo 2 
q* +eo)Yls. -Xlr-uo = -31 +eo)h (2.16) 

whence xlS = 0 behind the transverse waves. In this case 

2(1 +eo)3M J- EI”YI, J&p 

AJ 
= y;,, y-- = 

1 +eo [eo( 1 + eo)l’” 

Since tH = Va(o(2b&1, we have 

V. = 2&y = 2J2[e~‘)ll”[eo( 1 + eo)1”4 

which is identical with relations (2.11). 
The results obtained are based on the fact that the values of the components of the velocities and 

deformations, which arise from the self-similar problem, are constant. 
It we do not use this information, we have 

s x, = , t-- 
f( ) 

when b,t lsla,t, xl 

X, = f3(t-i)+f4[t+t) when 

= f2(,+t) when -aotIs<-b,r 

-b,t I s 5 b,t 

The functions f;, f;, fj, f; are found from the two relations of (2.16) and two relations that express 
the continuity of the deformation on the transverse waves, which is related to the previous result. 

We will derive the solution of Problem 1. The conditions on the characteristics 

[ 
8 

YII = -60 y,,+(l+eo)-p , 
I 

as 
;ii = -bo; ~1, yl,+(l+eo)!$ , 

t? 3 
$ = b, 
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define the velocity 

Yu. A. Dem’yanov et al. 

Ylt = -b,( 1 + e,)(4E)-‘“(8, + 0,) 

and the quantityyr, on S,&. When 8, = g2 = O0 we have 

y,, = -b,( 1 + e,)&-“*e,, yrs = 0 

and, from the solution of Eq. (1.4), we obtain xlr = 0 in the region SiS2 and xlt = const in the regions 
LISl and L2S2. 

It is necessary to take into account the effect of the stiffness of the string, but the regions where this 
has an effect will be of the order of several diameters of the string and, in our opinion, will have no 
appreciable influence on the vibrations. 

3. THE SPECTRA OF THE TRANSVERSE AND LONGITUDINAL 
VIBRATIONS OF MUSICAL STRINGS 

It is well known [3] that the solution y,(s, t) of problem 1 has the form 

y,(s, t) = 2 A,siny, A,, = 2hl* . zns xnb, 
sin-coso,t, 0, = - 

n=O x*n*(l- c)c i I (3.1) 

Calculations of 

y,, = i B,cosy, B, = Any 
II-1 

y;, = i $1 +,,,zE)+#[ ns( i + j) cos- -I- 7cs(i -j) 
!I=1 itj 

I cos- 
1 1 

(yf,), = _ C !$fsin2~s C BiBj:y +jjsin I ns(i + j) 

fl=l i+j 

-c 

BiBjRc(i - j> . rrs(i - j) 

i#j 
21 s’n7 

(here and henceforth i 2 1,j 2 1) show that the load per unit length, which occurs in the right-hand 
side or Eq. (1.4), is the superposition of component of the transverse harmonics. 

Taking into account the fact that 

Oi+j = Oi+Oj, Oi-j = Wi-@j 

the coefficients of the even and odd harmonics can be represented in the form 

Pdt) = - ;sin D . *(3(-w + 1) - c yLijEij- c y?LijEij (3.2) 
i-j=*m i+j=h 

P,,-,(t) = - c - D(2m - ‘)L..E..- 
ij ‘J 11 

i-j=2m-I 
c 7 IJ IJ 

D(2m - l)L..E.. 

i+j = *m-I 
i<j 

D= 2h21 
Lij = sin Kit Rjc 

7cc2( I - c)*’ 
-sin-, 1 1 Eij = (COSoi+jt+COSoi_jt) 

(3.3) 

The solution of homogeneous equation (1.4) with conditions (1.5) has the form 
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cpn = &sinyW+-$cosy 
ICn i 

(l-c) c C-5-iW 
1 

(3.4) 
p lcnS ma0 (1-c) = Ccp,cos(w,*r)sin~, 0: = I, W = 2c-I+&-- 

fl=l 5 

where OX is the frequency of longitudinal vibrations. 
For even harmonics (n = 2m) the solution of Eq. (1.4) 

2 
2 00 2mnS 

X1rr -aox1ss = 
x1 +e,) 

2P2m(t)sinI 

where P%(t) is an expression of the form (3.2), has the form 

2m7cs ufA’(s, t) = F,,(t)sin- 
1 

The function Fh is found from the equation 

d2F2?n 24m2n2 
2 

-+a 
dt2 

-F 
0 l2 2m 

= KP,,(t), K = ao 
2(1 +e,)2 

Then , 
F2,,,(0 = Ij 

4h, 
KPd~)sin(w&,(t - z))dT 

(3.5) 

+ 
40; - 20;; 

w,*,(w,* - *2 4w$ 
c 

i-j=2m 

~LyA:‘: + C ~ L,A:~ 
i-j = 2m 

i<j 

where 

ATj = 
0: 

COSWi+jt+ 
0: 

coswi- jc + 
w~(w;~j+w~+j-2w,*2) 

*2 
- wi2, j WZ’ -wFbj 

*2 cos 0; t 

%I (w2,-wf+j)(w~2-W:-j) 

Xl2m = U2m 
(II) (‘) + uzrn 

The method of obtaining Fhel for the odd harmonics is similar. We obtain 

F 2m-I = 
D(2m - 1) 

ij 
LijAfy-’ + c Wm- l)L,.A?T-l 

ij ‘J l,J 
i-j = 2m-I 

icj 

The general solution for xi@, t) has the form 

X12m + x12m - 1 >V 2nms 
X12m = cp2,cosw,*,tsinT + F,,,,sinF 

t?l=l 

(3.6) 

(3.7) 

(3.8) 
= cp,,-,cosw,*,-,tsm . (2m-l)xs+F2m-,sin(2m-1)xs 

1 1 
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Expressing i in terms ofj (orj in terms of i) with i 3 1, j 2 1, in relations (3.5) and (3.7) the displacement 
along x can be represented in the form 

I( 1 . 27cmc 
Xl2m = 

2n2m2 
sin-W 1 2lcmc 

1 
+ Gcos- ( pl-c2w 11 

1 5 1 
cos(j)* 2m t- 

I( 2 
Xnm-I = 

n2(2m - 1)2 
sinM2m- l)Cw+ 

1 

2 - +x(2m- 1)“’ R(2m I 1)c 

2m 2m-I 
m-l +j)jL2~-1+j,jA2~-l+j,j+ 

m-l 11 sinfc(2m - 1)s 
j 

(3.10) 

The determination of the characteristics of the vibrations of the string in Problem 2 is similar, and 
hence below we will only give the main stages of the solution. 

In Problem 2, as is well known [2] 

Y,h t) 
4Vo - 1 =--s 7 sin mc - sin lrn6 xns x;nb,t 

-sin-sin- 
b,lc ,,=,n z ’ z 1 

The solution of the problem of the longitudinal vibrations has the form (3.8), where 

(Pzrn = (p2m-1 = 0 

F 84 

2m = - 
a* 13b3xm 

cos20,t + 
Zm 0 

+ 
40; - 20;. 1 

fJIl;c,( Co,*,” - 40;) 
coso,*,t + - - 

4-m 1 
C 

32mV2 
-‘LijJijA:; 

i+j = 2,,,Pb&ij 1 
-L,J,A:; - ' + 

ij 
c 

i+j=Zm-I 

@+jJij/$ - I 1 
Jij = sin xi& -sin$! 

1 
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4. THE EFFECT OF ELASTIC CLAMPING 

We will consider non-zero boundary conditions at the clamping points. Suppose the clamping is rigid 
when s = 1: y = F = 0, and is elastic when s = 0. We have for the displacement vector 

I = kT (4.1) 

Condition (4.1) for y and f takes the form 

y = kEPsin0 = We, + x,)Y, (4.2) 

X = kE2cos0, x, = k 1 2 

2(1 +e$s > 

The natural assumption k G 1 enables us to seek solutions in the form 

x, (s, t) = x&s, f) + kx, 1 (s, t> + k2x,2(s, t) 

Y,hG = Y,O(S~ t) + ky,, (s, t) + k2y& t) 
(4.4) 

The solutions for yi&, t) and xiO(s, t) are identical with solutions (3.1) and (3.8) respectively. The 
problems for determining yii(s, t) and xii@, t) are as follows: 

Yl,,,(SV t) = ~:Y*lss(s, t); X*,,,(S, f) = a~x,*ss(s, t) 

Y,lhO) = Y,*,(S,O) = Y,,(O,d = x,,(s,O) = X*JS,O) = x,,(O,r) = 0 

Y,,(A t) = Ee,y,,,(L f); x,1 (1, t) = x,oJlt t> + q 1 f ,o)Y;os(~- t) 

The solution obtained by the method of separation of variables has the form 

n 0 
Y,l(s,t) = c y- [~~~,(f> + ky:,,(r)lsin~ 

n=l 

where 

YY,,(O = c 
(-l)P+ ‘2hsin’F 

p*= (o;-d)(l-ck 
( COSwpt - COSOJ) 

(4.5) 

(4.6) 

ant (-l)“hsin- 
Y:l”w = 

1 
o,( I- c)c 

tsinco,t (4.7) 

The secular terms can be eliminated by renormalization [6], changing from o, to o, = w,,(l + u). 
Expansion of solution (4.6) in the small parameter n gives 

Yh t) = c 
(-l)p+‘2hSin~ 

p*n (++:)(I-ck 
(cosobt - coso~t + uu$sino~t) 

This leads to the following result 

(-1) ‘+‘2hsinR!! 

w$-dw-c)c 
(CONl$f - cosO;t) . ltns sm - 1 

where 
P+l -1 

0; = a;(1 + p), p = -k(-l)i*lsin~ mi c 2(;1) . lcpc 2 an- 
1 

p#n op-“i 1 

(4.8) 
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since the secular terms from relation (4.8) are here cancelled out with the analogous terms from (4.7) 
The solution for xii@, t )  is not given here in view of its complexity, apart from the expression for the 

frequency shift; Aof+j - f (0; + Oj)-20 

5. ANALYSIS OF THE SOLUTIONS 

The results in Sections 3 and 4 enable us to draw the following conclusions. 
1. The forced longitudinal vibrations contain frequencies of transverse vibrations. 
2. Discontinuities on the transverse waves of the components of the longitudinal velocities and 

deformations are the reason for the occurrence of forced longitudinal vibrations at frequencies of the 
transverse vibrations. The solution obtained in the form of Fourier series for short times agrees with 
the solution in Section 2. 

3. The spectrum of the vibrations also contains higher frequencies of the longitudinal vibrations of 
the string. For example, for the physical-mechanical p;rameters of a metal string, the note D of the 
first octave of a guitar (E = 2 x 10 
of the string 7.069 x lOA m2, a0 = 

Pa, p = 7850 kg/m , T = 82 N, 1 = 0.65 m, the cross-section area 
5048 m/s and b. = 383.31 m/s) [7], WY = 3883 Hz, which exceeds 

01 = 294 Hz by practically a factor of 13. The subcontraoctave, the contraoctave, the major octave, 
and the lower, first, second, third, fourth and fifth octaves, as is well known [7], have the following 
frequencies (in Hz): 16.35-30.87, 32.4-61.74, 65.41-123.47, 130.81-246.94, 261.63-493.88, 
523.25-987.77,1046.5-1975.53,2093-3951.07 and 4186.01-7902.13. Hence of lies in the fourth octave 
and must be taken into account (as also the next three frequencies) in the overall spectrum of the 
vibrations. 

4. There is a shift in the natural frequencies of the vibrations due to the elasticity of the clamping. 
5. Vibrations of the sounding board occur at frequencies close to the frequencies of the longitudinal 

and transverse vibrations. 
6. In the expression forxi(s, t) (3.8) there is a componentrly’ (3.6) from which the resonance condition 

can be determined 

hj &i fio(2j- 1) 
m = JiTFo-~’ m = JiTFo+& m = 2(~o-JQ 

,J&(2i + 1) 
m = 2(JiT&/Foj 

iE 1,2, . . . . m- 1, je 1,2, . . . 

For example, when e. = l/197 we have oT = o13. 
7. If the longitudinal vibrations are taken into account (including the forced vibrations), a new 

procedure for calculating the vibrations of musical instruments is required. 
8. Experimental research in this area is desirable. 

We wish to express our gratitude to Professor A. V Rimskii-Korsakov, with whom we discussed the 
main aspects of this paper. 
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